新闻
中国节能网

工业源常见VOCs治理技术的研究进展

   2019-03-07 中国节能网1920
核心提示:随着工业化不断发展和严重的空气雾霾,人们越来越关注环境空气质量。有些 VOCs 不但有毒,而且还存在致癌风险,如苯和甲醛等。
 随着工业化不断发展和严重的空气雾霾,人们越来越关注环境空气质量。有些 VOCs 不但有毒,而且还存在致癌风险,如苯和甲醛等。
有些VOCs经过光化学氧化后生成光化学烟雾和二次有机气溶胶,其中二次有机气溶胶是 PM 2.5 的重要组成部分,光化学烟雾和 PM 2.5 会形成灰霾天气现象,对大气能见度产生不良影响;有些 VOCs(如氟氯昂)会直接消耗大气层中的臭氧,造成臭氧空洞。近几年,工业源 VOCs治理技术又有了更大的发展。
1、 燃烧法
燃烧法主要有直接燃烧、蓄热燃烧、催化燃烧和蓄热催化燃烧四种。
直接燃烧法工艺简单、净化效率高、燃烧产物主要是 H2O和CO2等。直接燃烧的运行温度一般大于 750 ℃,能耗高,还会产生 NOx 等二次污染物。当 VOCs 浓度小于 1000 ppm 时,仅靠自身燃烧产生的热量无法维持燃烧,需要添加辅助燃料。
 
蓄热式热氧化器,该氧化器对 VOCs 的处理效率为 96 %,比常规热力焚烧炉节能70 %~90 %;但是处理较高浓度 VOCs,排放不达标。蓄热燃烧法对实际医药化工有机废气中的甲苯、甲醇、二氯甲烷、乙醚和四氢呋喃的去除率分别为 88.0 %、94.8 %、95.3 %、96.8 %和 94.6 %,可达标排放,但也存在较多问题,如进气口传感器和陶瓷体易被堵塞,阀门易腐蚀等。
催化燃烧法具有燃烧温度低(通常小于 400 ℃),净化效率高,副产物(如NOx和二噁英)生成量少,对低浓度(<1000 ppm)VOCs也有催化氧化效果等优点。相对于单一金属催化剂,复合金属氧化物催化剂能发挥协同效应,大大提升催化性能。
 
现在主要使用负载型催化剂,因为催化剂的催化性能不仅取决于纳米金属离子的活性成分,还取决于负载材料,负载材料通过影响催化剂表面活性组分的分散度,从而影响催化剂活性。分子筛(如ZSM-5、MCM-41 和 SBA-15)是常见的负载材料之一,为了解决传统分子筛孔径小和强烈阻碍传质的难题,合成出了具有快速传质性能的介孔分子筛。
 
 
在蓄热燃烧法的基础上衍生出蓄热催化燃烧法。采用 Pd/Zr-Mn-O/载体催化剂在流向变换反应器中催化燃烧甲苯,甲苯浓度为 800~3200 mg/m3,去除率大于 96.5 %,而且催化剂的活性要比传统固定床的高 10%左右。流向变换催燃烧反应器集固定床催化反应器和蓄热换热床于一体,明显提高热回收率。未来应开发出高活性、高稳定性、高机械强度、价格低廉、疏水性能和抗中毒性能良好的催化剂,提高其催化活性。
2、 光催化氧化法
光催化氧化法具有反应条件温和(常温、常压),无选择性地氧化 VOCs,并同时降解多种 VOCs,投资和运行成本低,设备和操作简单等优点,特别适于处理低浓度 VOCs(<1000 mg/m3)。根据所使用的光源主波长,可分为紫外光催化氧化法和可见光催化氧化法。
 
TiO2是最常用的光催化剂,普遍使用的紫外光波长为 185nm、254 nm 和 356 nm,其中波长≤200 nm 的紫外光称为真空紫外光。真空紫外光能产生O3,强化光催化氧化降解 VOCs,降解效果比 254 nm 波长的催化降解效果好。臭氧协同光催化氧化降解 VOCs的效果也优于单独的臭氧降解。但是真空紫外光催化氧化法的出气O3浓度高,可以考虑使用对O3分解能力较高的物质掺杂 TiO2,降低出气O3浓度。
 
以 TiO2为光催化剂的紫外光催化氧化法存在去除率和光能利用率不高等不足。因此,通过对 TiO2进行改性,使 TiO2拓宽光谱响应范围,并且抑制光生空穴和电子复合,提高光能利用率和去除率,改性的方法有掺杂、重金属沉积、敏化和半导体复合等。
为了克服悬浮态催化剂易聚团失活的缺点,以及提高催化剂分散度和催化性能,催化剂通常负载在比表面积大的材料上,如泡沫金属材料、分子筛、和中空纤维膜等。针对金属氧化物难以固定的问题,可将 TiO2结构做成纳米微球形式,研究发现多孔纳米 TiO2微球吸附能力高,能强化随后的光催化氧化反应,并发挥协同作用。
光催化降解法的研究方向主要集中寻找更为高效的催化剂,提高VOCs的去除率;寻找合适载体,完善催化剂固定化方法;深入开展可见光催化氧化法研究。
随着新大气法的出台,VOCs排污收费以及公众对环境空气质量的高度关注,VOCs治理领域面临着巨大的发展机遇。燃烧法、光催化氧化法是工业源中比较常见的 VOCs治理技术,然而单一的处理技术的降解效果还不尽人意,还需要继续深入研究。
实际应用中普遍使用两种或以上技术的组合,以弥补单一技术的不足。因此,在选用治理法的时候,应先根据有机废气的物种特性、进口浓度、风量和温湿度等条件,结合每种处理方法的适用范围、去除效果、初次投资和运营成本等,最终确定处理方法。
 
举报收藏 0评论 0
 
更多>同类新闻
  • 绿能
    加关注0
  • 没有留下签名~~
推荐图文
推荐新闻
点击排行
网站首页  |  关于我们  |  我们宗旨  |  我们使命  |  我们愿景  |  组织机构  |  专家机构  |  机构分布  |  领导机构  |  管理团队  |  联系方式  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  京ICP备050212号-1