新闻
中国节能网

新思科技推出embARC机器学习推理软件库用于节能神经网络

   2019-04-08 中国节能网1380
核心提示:新的embARC机器学习推理(MLI)软件库针对使用卷积神经网络(CNN)和递归神经网络(RNN)的低功耗物联网应用进行了优化。
 新的embARC机器学习推理(MLI)软件库针对使用卷积神经网络(CNN)和递归神经网络(RNN)的低功耗物联网应用进行了优化。 
该库支持节能的新思科技DesignWare ARC EM DSP和HS DSP处理器 
与未优化的实现相比,将二维卷积层的性能提高16倍 
该库为各种拓扑结构(包括使用长短期内存(LSTM)单元构建的拓扑结构)将RNN加速5倍 
MLI软件库通过embARC.org网站作为免费的开源软件发布
新思科技(Synopsys, Inc.,纳斯达克股票市场代码:SNPS)近日宣布推出全新embARC机器学习推理软件库,以促进集成了新思科技DesignWare®ARC®EM和HS DSP处理器IP的节能神经网络片上系统(SoC)设计的开发。embARC机器学习推理(MLI)软件库为开发人员提供了优化的功能,来实现各种类型的神经网络层,对于低功耗和低面积的应用,如语音检测、语音识别和传感器数据处理,可显著减少处理器执行周期。embARC MLI软件库可通过embARC.org获得。这是一个专门的网站,让软件开发人员能够集中访问支持ARC处理器的免费开源软件、驱动程序、操作系统和中间件。
Kneron创始人兼首席执行官Albert Liu表示:“为了向用户提供超低功耗的语音触发和识别人工智能解决方案,我们需要像ARC EM DSP处理器那样既节能又节省空间的处理器IP。通过提供embARC机器学习推理软件库,新思科技为片上系统开发人员提供了在基于ARC设计上快速实现机器学习算法所需的基本核心程序。”
embARC MLI软件库支持ARC EMxD和HS4xD处理器,并为有效推断中小型机器学习模型提供了一组基本内核。它能够有效地实现诸如卷积、长短期内存(LSTM)单元、池化、激活函数(如修正线性单元)和数据路由操作(包括填充、转置和连接)等操作,同时降低功耗和内存占用。例如,在ARC EM9D处理器上运行CIFAR-10等低功耗神经网络基准测试,与同类处理器中的竞争对手相比,最多可减少4倍的执行周期。此外,MLI库在广泛的神经网络层(如深度方向的二维卷积、全连接的基本RNN单元和LSTM单元)中平均实现了3-5倍的性能改进,对于二维卷积层,最大性能提升可达16倍。
新思科技IP营销副总裁John Koeter表示:“对于边缘设备中的嵌入式机器学习功能,功耗和占用面积是至关重要的考虑因素。新思科技通过使多种类型的神经网络运行在节能的ARC EM和HS DSP处理器上,扩展了ARC处理器系列,让开发人员可以选择这些处理器来创建他们的节能AI设计。”
 
举报收藏 0评论 0
 
更多>同类新闻
  • 绿能
    加关注0
  • 没有留下签名~~
推荐图文
推荐新闻
点击排行
网站首页  |  关于我们  |  我们宗旨  |  我们使命  |  我们愿景  |  组织机构  |  专家机构  |  机构分布  |  领导机构  |  管理团队  |  联系方式  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  京ICP备050212号-1