核心电路带隙基准源实际电路图的核心电路是使用两管式带隙基准电压源,它是设计带隙基准电压源电路的核心,是进行下一步设计的必备步骤。增强电源抑制比电路带隙基准电压源,在传统设计中一般采用运算放大器来稳定电路,同时提高电源抑制比,但运算放大器高失调的缺陷限制了电源抑制比的进一步提高。
当电源电压有频率较高的交流信号干扰时,放大器的输出会与电源电压有很明显的相位差,导致VREF高频时电源抑制比很低。为了避免放大器的缺陷,本文采用内部负反馈电路来提高VREF在低频时的电源抑制比。另外在电路输出端增加了一个RC滤波器,用来提高VREF在高频时的电源抑制比。
快速启动电路快速启动电路,当基准源输出没有到预定值而被控制电路检测到后,会输出高电平,N42栅电压为高电平,N42导通,同时使P8栅电压降低,P8导通,对电容C2充电;当快速启动电路检测到C2电容电压到预定值,低电平输出,从而关断快速启动电路,切断充电电流。
当电源电压有频率较高的交流信号干扰时,放大器的输出会与电源电压有很明显的相位差,导致VREF高频时电源抑制比很低。为了避免放大器的缺陷,本文采用内部负反馈电路来提高VREF在低频时的电源抑制比。另外在电路输出端增加了一个RC滤波器,用来提高VREF在高频时的电源抑制比。
快速启动电路快速启动电路,当基准源输出没有到预定值而被控制电路检测到后,会输出高电平,N42栅电压为高电平,N42导通,同时使P8栅电压降低,P8导通,对电容C2充电;当快速启动电路检测到C2电容电压到预定值,低电平输出,从而关断快速启动电路,切断充电电流。