大多数轿车上都可以看见VVT-i,VTEC,VVL,VVTL-i等标号,这些标号的含义就是——可变配气正时技术。
可变配气技术,从大类上分,包括可变气门正时和可变气门行程两大类,有些发动机只匹配可变气门正时,如丰田的VVT-i发动机;有些发动机只匹配了可变气门行程,如本田的VTEC;有些发动机既匹配的可变气门正时又匹配的可变气门行程,如丰田的VVTL-i,本田的i-VTEC。
首先谈一下普通发动机配气机构,大家都知道气门是由发动机的曲轴通过凸轮轴带动的,气门的配气正时取决于凸轮轴的转角。在发动机运转的时候,我们需要让更多的新鲜空气进入到燃烧室,让废气能尽可能的排出燃烧室,最好的解决方法就是让进气门提前打开,让排气门推迟关闭。这样,在进气行程和排气行程之间,就会发生进气门和排气门同时打开的情况,这种进排气门之间的重叠被称为气门叠加角。在普通的发动机上,进气门和排气门的开闭时间是固定不变的,气门叠加角也是固定不变的,是根据试验而取得的最佳配气定时,在发动机运转过程中是不能改变的。然而发动机转速的高低对进,排气流动以及气缸内燃烧过程是有影响的。转速高时,进气气流流速高,惯性能量大,所以希望进气门早些打开,晚些关闭,使新鲜气体顺利充入气缸,尽量多一些混合气或空气。反之在在发动机转速较低时,进气流速低,流动惯性能量也小,如果进气门过早开启,由于此时活塞正上行排气,很容易把新鲜空气挤出气缸,使进气反而少了,发动机工作不稳定。因此,没有任何一种固定的气门叠加角设置能让发动机在高低转速时都能完美输出的,如果没有可变气门正时技术,发动机只能根据其匹配车型的需求,选择最优化的固定的气门叠加角。例如,赛车的发动机一般都采用较小的气门叠加角,以有利于高转速时候的动力输出。而普通的民用车则采用适中的气门叠加角,同时兼顾高速和低速是的动力输出,但在低转速和高转速时会损失很多动力。而可变气门正时技术,就是通过技术手段,实现气门叠加角的可变来解决这一矛盾。
如90年代初,日本本田公司推出一种即可改变配气正时,又能改变气门运动规律的可变配气定时—升程的控制机构,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。就是现在大家耳熟能详的VTEC机构:一般发动机每缸气门组只由一组凸轮驱动,而VTEC系统的发动机却有中低速用和高速用两组不同的气门驱动凸轮,并可通过电子控制系统的自动操纵,进行自动转换。采用VTEC系统,保证了发动机中低速与高速不同的配气相位及进气量的要求,使发动机无论在何速率运转都达到动力性、经济性与低排放的统一和极佳状态。需要说明的是,发动机采用可变配气定时技术获得上述好处的同时,没有任何负面影响,换句话说,就是没有对于发动机的工作强度提出更高的要求。
VTEC的设计就好像采用了两根不同的凸轮轴似的,一根用于低转速,一根用于高转速,但是VTEC发动机的不同之处就在于将这样两种不同的凸轮轴设计在了一根凸轮轴上。
本田发动机进气凸轮轴中,除了原有控制两个气门的一对凸轮(主凸轮和次凸轮)和一对摇臂(主摇臂和次摇臂)外,还增加了一个较高的中间凸轮和相应的摇臂(中间摇臂),三根摇臂内部装有由液压控制移动的小活塞。
发动机低速时,小活塞在原位置上,三根摇臂分离,主凸轮和次凸轮分别推动主摇臂和次摇臂,控制两个进气门的开闭,气门升量较少,情形好像普通的发动机。
虽然中间凸轮也推动中间摇臂,但由于摇臂之间已分离,其它两根摇臂不受它的控制,所以不会影响气门的开闭状态。发动机达到某一个设定的高转速时,电脑即会指令电磁阀启动液压系统,推动摇臂内的小活塞,使三根摇臂锁成一体,一起由中间凸轮c驱动,由于中间凸轮比其它凸轮都高,升程大,所以进气门开启时间延长,升程也增大了。当发动机转速降低到某一个设定的低转速时,摇臂内的液压也随之降低,活塞在回位弹簧作用下退回原位,三根摇臂分开。
整个VTEC系统由发动机电子控制单元(ECU)控制,ECU接收发动机传感器(包括转速、进气压力、车速、水温等)的参数并进行处理,输出相应的控制信号,通过电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速工况下由不同的凸轮控制,影响进气门的开度和时间。
本田的VTEC发动机技术已经推出了十年左右了,事实也证明这种设计是可靠的。它可以提高发动机在各种转速下的性能,无论是低速下的燃油经济性和运转平顺性还是高速下的加速性。可以说,在电子控制阀门机构代替传统的凸轮机构之前,本田的VTEC技术在目前可以说是一种很好的方法.使汽车技术的高科技含量增大,是汽车飞速发展的又一里程碑。
可变配气技术,从大类上分,包括可变气门正时和可变气门行程两大类,有些发动机只匹配可变气门正时,如丰田的VVT-i发动机;有些发动机只匹配了可变气门行程,如本田的VTEC;有些发动机既匹配的可变气门正时又匹配的可变气门行程,如丰田的VVTL-i,本田的i-VTEC。
首先谈一下普通发动机配气机构,大家都知道气门是由发动机的曲轴通过凸轮轴带动的,气门的配气正时取决于凸轮轴的转角。在发动机运转的时候,我们需要让更多的新鲜空气进入到燃烧室,让废气能尽可能的排出燃烧室,最好的解决方法就是让进气门提前打开,让排气门推迟关闭。这样,在进气行程和排气行程之间,就会发生进气门和排气门同时打开的情况,这种进排气门之间的重叠被称为气门叠加角。在普通的发动机上,进气门和排气门的开闭时间是固定不变的,气门叠加角也是固定不变的,是根据试验而取得的最佳配气定时,在发动机运转过程中是不能改变的。然而发动机转速的高低对进,排气流动以及气缸内燃烧过程是有影响的。转速高时,进气气流流速高,惯性能量大,所以希望进气门早些打开,晚些关闭,使新鲜气体顺利充入气缸,尽量多一些混合气或空气。反之在在发动机转速较低时,进气流速低,流动惯性能量也小,如果进气门过早开启,由于此时活塞正上行排气,很容易把新鲜空气挤出气缸,使进气反而少了,发动机工作不稳定。因此,没有任何一种固定的气门叠加角设置能让发动机在高低转速时都能完美输出的,如果没有可变气门正时技术,发动机只能根据其匹配车型的需求,选择最优化的固定的气门叠加角。例如,赛车的发动机一般都采用较小的气门叠加角,以有利于高转速时候的动力输出。而普通的民用车则采用适中的气门叠加角,同时兼顾高速和低速是的动力输出,但在低转速和高转速时会损失很多动力。而可变气门正时技术,就是通过技术手段,实现气门叠加角的可变来解决这一矛盾。
如90年代初,日本本田公司推出一种即可改变配气正时,又能改变气门运动规律的可变配气定时—升程的控制机构,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。就是现在大家耳熟能详的VTEC机构:一般发动机每缸气门组只由一组凸轮驱动,而VTEC系统的发动机却有中低速用和高速用两组不同的气门驱动凸轮,并可通过电子控制系统的自动操纵,进行自动转换。采用VTEC系统,保证了发动机中低速与高速不同的配气相位及进气量的要求,使发动机无论在何速率运转都达到动力性、经济性与低排放的统一和极佳状态。需要说明的是,发动机采用可变配气定时技术获得上述好处的同时,没有任何负面影响,换句话说,就是没有对于发动机的工作强度提出更高的要求。
VTEC的设计就好像采用了两根不同的凸轮轴似的,一根用于低转速,一根用于高转速,但是VTEC发动机的不同之处就在于将这样两种不同的凸轮轴设计在了一根凸轮轴上。
本田发动机进气凸轮轴中,除了原有控制两个气门的一对凸轮(主凸轮和次凸轮)和一对摇臂(主摇臂和次摇臂)外,还增加了一个较高的中间凸轮和相应的摇臂(中间摇臂),三根摇臂内部装有由液压控制移动的小活塞。
发动机低速时,小活塞在原位置上,三根摇臂分离,主凸轮和次凸轮分别推动主摇臂和次摇臂,控制两个进气门的开闭,气门升量较少,情形好像普通的发动机。
虽然中间凸轮也推动中间摇臂,但由于摇臂之间已分离,其它两根摇臂不受它的控制,所以不会影响气门的开闭状态。发动机达到某一个设定的高转速时,电脑即会指令电磁阀启动液压系统,推动摇臂内的小活塞,使三根摇臂锁成一体,一起由中间凸轮c驱动,由于中间凸轮比其它凸轮都高,升程大,所以进气门开启时间延长,升程也增大了。当发动机转速降低到某一个设定的低转速时,摇臂内的液压也随之降低,活塞在回位弹簧作用下退回原位,三根摇臂分开。
整个VTEC系统由发动机电子控制单元(ECU)控制,ECU接收发动机传感器(包括转速、进气压力、车速、水温等)的参数并进行处理,输出相应的控制信号,通过电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速工况下由不同的凸轮控制,影响进气门的开度和时间。
本田的VTEC发动机技术已经推出了十年左右了,事实也证明这种设计是可靠的。它可以提高发动机在各种转速下的性能,无论是低速下的燃油经济性和运转平顺性还是高速下的加速性。可以说,在电子控制阀门机构代替传统的凸轮机构之前,本田的VTEC技术在目前可以说是一种很好的方法.使汽车技术的高科技含量增大,是汽车飞速发展的又一里程碑。